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Diffusion in a Bistable Potential. 
General Inverse Friction Expansion 
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The derivation of the characteristic times and of the density probability dis- 
tribution for the motion of a Brownian particle in a bistable potential at inter- 
mediate friction was, until now, essentially limited to low orders in the inverse 
friction 7 - a  On the other hand, at least for temperatures low with respect to the 
barrier height, the Kramers time, which is the lowest nonzero eigenvalue in the 
bistable potential problem, is known exactly. This paper presents a systematic 
approach for the determination of the solution of the Fokker-Planck equation 
in an arbitrary potential in the overdamped regime. This calculation includes 
anharmonicity corrections up to order 7 5. One feature of this paper is to show 
that the problem is equivalent to replacing the original potential ~b(x) by a free 
energy which, for a velocity distribution at equilibrium, simply is ~ (x )=  
~b(x) - k B T ln[g(x) ] ,  where 

g(x) = {m72/[2~)"(x)] } { 1 -- [1 -- 4c}"(x)/my 2 ] 1/2} 

For out-of-equilibrium velocity distribution an effective potential is also 
explicitly given. In every case the function g(x) plays a crucial role. This 
approach is then applied to the exact determination, in the low-temperature 
limit, of all the characteristic times and of the probability distribution in bistable 
potentials. Moreover, from the knowledge of the characteristic times and 
probability density distribution, it would be easy to determine the general and 
exact Suzuki scaling law for the relaxation from the instability point at inter- 
mediate friction. 

KEY WORDS:  Nonlinear Fokker-Planck-Klein Kramers equation; inverse 
friction expansion; diffusion. 
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268 Gouyet 

1. I N T R O D U C T I O N  

The relation between the Fokker-Planck-Klein  Kramers ( F P K K )  descrip- 
tion for the distribution function of velocity and position of a Brownian 
particle in an external field and the Smoluchowski contractd description for 
the distribution function of position only became evident recently. It was 
clarified in important contributions by Wilemski (1) in 1976 and Titulaer (2) 
in 1978. Extensive history may be found in these two papers. 

More recently Gouyet  and Bunde (3~ applied the Titulaer approach to 
the problem of diffusion in a bistable potential. The method was moreover 
presented in clearer algebraic form, leading to simpler recursion formulas. 
In particular, an operator transformation was introduced which makes it 
possible to write the evolution operator as a simple Hermitian operator 
valid up to order 7 -5 at least. In the present paper, a complete solution 
including the well-known inverse Kramers time (4) 

z~ 1 = W=b=OgM 1 [(O9 2 + 72/2) 1/2 -- 7/2] 

is obtained. The method is as follows. 
The distribution function P(v, x, t) of the velocity v and position x of a 

Brownian particle of mass m in an external potential ~b(x) at time t is 
described by an F P K K  equation, 

OP(v, x, t)/~t = L(v, x) P(v, x, t) (1.1) 

with the Liouville operator L explicitly given by 

L(v, x) = 7C(v) + S(v, x) 

C(v) = (kB T/m) (~2/~U2 "q- (O/(~U)U 

S(v, x) = - v  O/Ox + (I/m) ~b'(x) O/Ov 

(1.1a) 

(1.1b) 

(1.1c) 

where 7 is the friction coefficient and T the temperature of the bath. We 
also define/? = 1/kB T. 

It is useful to introduce the operators a, a+,d, and d + defined by 

a + = - (1 /x /m/?  ) ~9/Ov; a = (1/x/mfl) ~/~?v + x/mfl v (1.2a) 

d + = --(l/m/?) ~?/Ox; d =  (1/x/m/?) ~/Ox + x/(/?/m)~' (1.3a) 

giving for the collision or diffusive part 7C [-see (1Ab)] the simple 
expression 

C = - a  + a (1.2b) 
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and for the streaming part S [see (1.1c)] 

S = d + a - d a  + (1.3b) 

The operators a + and a, and d + and d are adjoints with respect to the 
scalar product: 

( f ,g)=fdvfdxexpf l (mv2/2+q~)f*(v ,x)g(v ,x)  (1.4) 

Then C is Hermitian and S anti-Hermitian with respect to this scalar 
product. Moreover, the following commutation relations hold: 

[a, a + ] = 1 and [d, d + ] = c~"/m (1.5) 

Titulaer's idea, (2) which follows the Chapman-Enskog approach to the 
Boltzmann equation, is to expand the distribution P(v, x, t) on the basis of 
the eigenfunctions Z.(v) of C (as 7C is the leading operator in L). The 
eigenvalue equation is 

CZ.(V) = --nzn(v ) (1.6) 

with 

Z.(v) = In! (4~)1/2(2mfi) ( '- 1)/2] 1H.[vx/(mfl/2) ] exp(_mflv2/2) (1.7) 

in which H.(u) are the usual Hermite polynomials. Moreover, one has 

a+z .=(n+l ) z . ;  aXn=Zn_l 

z~=O if n < O  

(1.8) 

The Z. basis is nonorthogonal with respect to the ordinary scalar product 
{ f ig}  = S f * ( v )  g(v)dv and {)~.} is the biorthogonal basis associated with 
the {Z.} and such that <2mlZ. )=6m. .  

The Titulaer expansion may then be written in the following way: 

where 

P(v, x, t ) = ~  P[.](v, x, t) (1.9) 
n 

P[.](v, x, t) = c[.](x, t) Z.(v) + y --[.]w, x, 
i = 1  

(1.1o) 

We will now use the operator technique recently proposed by Gouyet and 
Bunde, (3) which is simpler than the original one developed by Titulaer, but 
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is nevertheless directly related to the general formulation showing the 
parallelism between Bloch and Chapman-Enskog perturbation in 
degenerate manifolds given in Ref. 2. The pEi2 can be expressed as follows: ~[n] 

pei2 ~, gm(V) e~2 t), i 1, 2, 3 . . . .  (1.11) e.l  = O e m j e . ~ ( x )  ce .~(x ,  = 
m=O 

Here ee,3(x, t) is the same function as in (1.10). The operators Ei3 OEm3e . l ( x )  
act on x in ce,3(x, t). By definition, 

O E~ - 3  and O e~] = 0  when i ~ 0  (1.12) [ m ] [ n ]  - -  mn [ m ] [ m ]  

The time evolution of ce,l(x, t) is governed by the expansion (see Refs. 2 
and 3) 

~cEnl(x,t)/~t=I-n?+ ~ 7 ~a[~33(x)]ce~l(x,t) (1.13) 
i = 0  

where ~e,3~e~3 are again operators on x in ce,3(x , t). 
The operators OE~le, 3 and oE~,31 are defined by recursions relations and 

are given in Ref. 3, but they can also be derived from Eqs. (3.17) and (3.15) 
of Ref. 5. 

In the present paper we will not follow the Bloch-Chapman-Enskog 
Titulaer (BCET) degenerate perturbation expansion, but try to generalize 
the Bunde-Gouyet  procedure, r which consists in searching for a con- 
venient transformation making the evolution operator Hermitian. The dif- 
ferent approaches are indeed not independent of one another. 

2. B U I L D I N G  UP OF A H E R M I T I A N  O P E R A T O R  

This section is devoted to the definition of an operator transformation 
such that the evolution operator (1.1) becomes Hermitian. 

2.1. The Recursion Relat ions 

Let us define 

 En Is, x) = si aE  (x ) 
i = O  

and 

O[rn]En](S, X ) ~  ~,  oqi(~[i]V[m][n] ~_ 

i : O  i= [m-n] 
si n [ i ]  

V i m ] I n ]  

(2.1) 

(2.2) 
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Then the set of Eqs. (1.i0) and (1.13) may be written as 

PEal(v, x, t) = ~ Zm(V) O[m][n](~ )-1, X) C[n](X , t) 
m = O  

and 

3c[~?(x, t)/at = [ - -n  7 + ~?E,?(?-I)] cE,3(x, t) 

(2.3) 

(2.4) 

The operators ~?E,2 and O[m][n~ ] will now be calculated starting from the 
following recursion relation, which is easily obtained after a derivation of 
(2.3) with respect to time and by using (2.4) and the basic Eq. (1.1) (see 
Appendix A): 

OE,+pjE,](0Dl + PT) =- --(n + p)dOf,+p_ ~IE~2 + d+O[n+p+ lien] (2.5) 

Since O ; , l [ , ? - 1 ,  the relation (2.5) defines c3En I as a function of O[,,lE,~ 
when p = 0: 

0E~3 - -ndOE~- ~]E,3 + d+OE~+ 13E,,1 (2.6) 

It will be important to notice when comparing the different orders in 7 
that OE,~jcnj(7 -~, x) is proportional t o  7 -Im-nl as 7 goes to infinity. 

--1 

2.2.  S e a r c h  f o r  a H e r m i t i a n  O p e r a t o r  c~[.] 

Titulaer showed (2) that 8[/~ for i~>5 was no longer Hermitian with 
respect to the scalar product (f, g), so that it would be of great interest to 
look for a transformation SEn J =>OE~l such that the new operator #Enl is 
Hermitian with respect to some given scalar product ( f i g )  (S f*g  dx, for 
instance). 

For this purpose, let us define OEnJ with an arbitrary Gcnj such that 

~c-2 = CEnJ exp(/~GE~]) (2.7) 

Then 

with 

(2.8) 

den] = e~r~ 8E~] e ~GE.1 (2.9) 

and we will try to find two functions GE, l and ~E,] (defined below) that 
make BE,,] Hermitian. 
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Notations. To simplify the reading, the index In]  will be omitted in 
the following except when necessary. Moreover, we will use the compact 
notation Op-OEn+p3En 3 and in general a boldface operator for any con- 
jugate transformation of the type X =  exp(~G)Xexp(-~G).  

With this last t ransformat ionthe  basic recursion formulas (2.5) and 
(2.6) become 

Op(0 + ?p) = - ( n  + p) dOp_~ + d+Op+ ~ (2.10) 

= - n d O _ l  +d+O1  (2.11) 

and 
Oo = Oo = 1 (2.12) 

As in the preceding paper, (3) let us now indicate with a "dagger" 
operators that are mutually adjoint with respect to ( f i g ) =  
f f* (x)  g(x) dx, 

A* = -(raft) -1/2 O/Ox + (m~) 1/2 5'/2m (2.13) 

A = (m/~)-l/2 O/~x + (mfl) 1/2 5'/2m (2.14) 

Then [A, A*] = 5"/m and 

d + = A* + ~ / ( ~ / m ) ( G ' -  5'/2) (2.15) 
d = A + x/(fl/rn)((Y - G' - 5'/2) (2.16) 

If ~ is Hermitian, it must be reducible to the general expansion 

0 = Z ~x(x)(A*A) K (2.17) 
K 

where fC~(x)-fC/~E,l(x) is a function to be determined using the above 
recursions. At this point, it is convenient to introduce two new functions 
g,(x) and hn(x) defined by the two relations (the indices n are omitted) 

G = ~b/2 + (1 - 2n - 2n2)/2/~ ln(g/h) (2.18a) 

5 =  ~b - (1 + 2n)/~ in(gh) (2.18b) 

These relationss generalize Eqs. (2.29a) and (29b) of Ref. 3. 2 We then con- 
sider the following structure for Op: 

Op = ~ [~Kp(x)A* + 7xp(x)](A*A) K (2.19) 
K 

2 g(x) in Ref. 3 is precisely the same as in (2.18a) and (2.18b) when n =0. Compare, for exam- 
ple, (2.18a) and (2.18b) of this paper when h = 1 and (2.29a) and (2.29b) of Ref. 3. 
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and will verify a posteriori that this expression is consistent with the recur- 
sion relations. This defines new recursions, but now between the flKp, 7/~p, 
and f4x. 

The initial condition Oo = 1 gives 

flKo = 0 and YKo - 6,~o (2.20) 

(where 6 is the usual Kronecker symbol). 

3. THE n = 0  CASE 

Since this case is equivalent to the corrected Smoluchowski equation, 
it is the most important. It essentially corresponds to regimes for which the 
time is much larger than ~-~, that is, for which most of the velocity dis- 
tribution has reached equilibrium. 

When n = 0  and 7-1 is set to s, the recursion formulas (2.10) and 
(2.11 ) reduce to 

O=d+O1 (3.1a) 

Op(g + p/s) = - p  dOp_, + d +Op +, (3.1b) 

3.1. Study of Equation (3.1a) 

Expression (3.1a) with (2.17) and (2.19) leads to (the index n (=0)  
remains omitted) 

7K1 - - ~  (mfl  )l/2[fl Kl "]- ( h' /h --fl~z)flK1 ~ ( 3 . 2 a )  

ffx = - (mf l ) -1 /2 (~ , 'K1  - -  gt/g~K 1 ) - -  (~"/m)f lK1 -- flK 1,1 ( 3 . 2 b )  

The function g~n = o) which appears here is exactly the function g calculated 
in Ref. 3 up to order ?-4. Explicitly in formulas (2.29a) and (2.29b) of 
Ref. 3 

go = g = 1 + r  ~ + 0(~; ~) 

3.2. Study of Equation (3.1b) 

The equalities (3.2a) and (3.2b) correspond to the value p = 0  in 
(3.1b). The general case is more complicated to handle. We have the 
following equation: 
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-- p[ A* - (fl/m )l/2 (J' + (mfl) 1/Z g,/g ] I ~  x ([J Kp 

- [At + (mfl)-l/2g'/g] [ ~  (t~Kp+ lA '  W TKp+ l)(AtA)t(l=-O 

The main problem in the above expression is to put the product 

in a canonical manner 
K 

2 
J = 0  

(A,A )K fq~,( A,A )H 

KH t J+ H ( u ~ A  ~ +v j  )(A A) 

At ] 1 +?Kp-1)(AtA) ~ 

(3.3) 

in such a way as to identify the coefficients of (AtA) ~ and A*(AtA) K to 
z e r o .  

3.3. The Harmonic Approximation 

3.3.1. The  Harmonic Approximation.  This consists in assum- 
ing that g ' =  h ' =  0. It will be shown below that under these conditions, f#~ 
commutes with A* and A: 

[ At, ~H] = [A, fqH] = [A*A, f#~] = 0 

This considerably simplifies expression (3.3). Moreover, since the com- 
mutator of A*A with any function f is given by 

[ A*A, f ] = - f" /m~ + f ' / x /  (m~ ) { A t - A } (3.4) 

the commutation [A*A, fr = 0 supposes that 

~r 0 (3.5) 

In the harmonic approximation, the two basic relations connecting p and 
p _  1 are, using (2.18b), 

2 flKP (ffL-K-}- (P/S)t~LP + (mfl)--l /2(pflLP 1 "~ ~Lp+ 1) 
K 

- (~/m)m(f~Lp+l - (PTLp-1 + VLp+ 1) = 0 (3.6a) 

~.?Kpf~L K+ (P/S)VLp+(rnfl) 1/2(PY'cp i + V'Le+I)+(PflL--Ip--I +~L--p+~) 
If 

+ (fl/m)/Z(~'PTLp-i + (O"/m)(p~Lp-1 +/~Lp+ 1)= 0 (3.6b) 
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The harmonicity condition g ' =  h ' =  0 gives ~ " =  ~b" in the last recursion 
[see (2.18b)]; moreover, in this case d---A, d + = A  t. 

3.3.2. Solution of the Recursions (3.6a, b). We can set p ~> 0 in the 
case n = 0, since then [-see (2.3)] negative values for p are not relevant. It is 
possible to put ~Xp and VKp in the following form: If one introduces the 
function 

F(z) = (1/2z)[ 1 - x/(1 - 4z)] (3.7) 

and uses (3.6a), and (3.2b) with p ~> 0, one obtains 

~Kp • (1/7) pF((9"/my2)PbKp (3.8a) 

7Kp = (1/7) pF((Y'/m72)pcKp (3.8b) 

~r ( - fCK~o~) = - 6 K ~ ( 1 / ~ , )  r(~"/m~ ~) (3 .8c )  

where bKp and cKp do not depend on 7- 
We now understand the reasons for the name "harmonic 

approximation": The relations (3.8c) and (3.5) imply ~b"(x)=0 and the 
potential ~ is harmonic. Indeed, the above approach is not the best way to 
study the pure harmonic potential, (6) but it presents the great advantage of 
making a bridge with the approaches for more general potentials. 

The b~p and C~p are again obtained through recursion relations 
obtained from (3.6a) and (3.6b) using the fact that zF2-F+ 1 =0, 

bKp = - - ( m f l )  - l / 2 b ' x p  1 ~- CKp--1 

c ~  = - - ( m f l ) - l / 2 c '  - -  Kp--1 ( f l / m ) l / 2 0 ' C K p - - 1  

or equivalently as recursions on K, 

(3.9a) 

( ( ; ' / m ) b , < p _  l - D,<_ ~p_ l 

(3.9b) 

bK lp=P(O" /m)bxp  - (fl/m)l/zfb'bKp+1-b~p+2 (3.10a) 

c K lp=p((J"/m)C~p--(fl/m)l/ZqYcKp+l--CKp+2 (3.10b) 

the solutions of which are, starting from the initial conditions bKo - 0 and 
CKo - 6K0, for m = 0, 1, 2,... (E[m/2] designates the integer part of m/2 and 
(P) are the binomial coefficients): 

b K p ( x )  = bx~.~: + ~ + m 

E~m/2] --1) K+m ( m _  r)(  K +mm_ S) = Z ( +rA(q, r ,s) 
q . . . . .  0 2q - r 
x ( {fl/m)m(J }m - Zq{~,,/m } q (3.1 la) 
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cKp(x) = c/<2K+ 1 +m 

= ~ (-- ( m + 2 - 2 q )  A ( q - l , r , s )  2 q - 2  
q,r,s = 0 

- ( K + m +  l - s ) / ( m +  l - r ) A ( q , r , s )  2q - r  

• {(~/m)~/20'}m-=q+ l{~'/m}q (3A lb) 

The coefficients A(q, r, s) are pure numbers independent of 7, K, p, or m, 
but they are too complicated to be explicitly calculated. The first values 
from q = 0-4 are given in Appendix B as well as their recursion relation. 

One can also use the recursion relations (3.10a) and (3.10b) starting 
from the initial conditions 

bK,2K+I  = (--1)K; CK,2K+I = (--1)K+ I (K+ 1)[(fl/m)'/2(Y] 

The first coefficients bKp and CKp are 

bKo = 0, 

bKl = (~KO, 

bx2 = -- [ (fl/m)l/2 ( y ] 3Ko, 

CKO ~ (~ KO 

CK1 = - - [  ( f l / m ) l / 2  0'](~KO 

C K2 = [ (fl/m)1/2 (~']2 3 Ko 

bK3 = { [(~/m)1/20']2 + O"/m} 6m -- 3i~1 

OK3 = -- [ (fl/m )i/2 0' ] { [(fi lm)l~20']2 

+ O"/m } 6KO + 2[(film)l~20'] c~KI 

bK4 = -- [ (fl/m)a/2 0 ' ]  { [ ( f i /m)m O'] 2 

+ 30"/m} aKo + [([1/m)~/20'] a~a 

C K4 = [ (fl/m ) l/2 0' ]2 { [ (fl/m ) l/2 0' ]2 

+ 30"/m} (~m-- 3[(fl/m)1/20']Z6x~ 

and so on. 

3.4. The Semianharmonic Approximation 

Since the general solution of Eq. (3.3) when ~b is anharmonic is too dif- 
ficult to be extracted directly, we will use results obtained by continuity 
between the GB calculation ~3) and the general harmonic formula from Sec- 
tion 3.3. We will first suppose that the second derivatives of  (~ are now 
spatially dependent. 
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For  clarity the index n = 0 is reintroduced.  F r o m  (2.8) and (3.8c), we 

derive the basic equat ion for ~ E0], 

where 

aO Eol/Ot = 8[o] ~k [o] (3.12a) 

* F(@"/m72)A~o]AEo] 8Eo ] = ~Eo]AEo3A[o ] = - ( 1 / 7 )  (3.12b) 

The opera tor  8{ol is indeed Hermitian,  and the eigenfunctions of  A~o]AEo l 
are well known:  

with 

S[o](X) = 8/TA*ro]A {o] = 82 82/8x2 + Viol(X) (3.13a) 

VEo](x ) = [fiEo](X)/2] 2 -  (8/2) t~0](x ) (3.13b) 

and the reduced quantities 

u(x) = q~(x)/mT; ~E,](x) - ~D](x)/mT; 8 = (mfl7) - '  (3.14) 

Compar ing  with formula (2.30) of Ref. 3 when n = 0, we can see that  the 
two approaches are complementary :  Equat ion  (3.12) is 

- 8 a~b Eo]/~t = FS[o]  0 {oj (3.15) 

with 

r ( ~ " / m 7  2) = 1 + (u"/~) + 2(u"/7) 2 + ..- = g(x) + 0(7 -4) 

and is valid to any order  in 7 1 but is a priori restricted to harmonic  poten- 
tials, while the first one corresponds to an arbi t rary potential  but  is limited 
to order 7 -3 in g(x). 

The harmonic  result for ~x is (3.8c), 

Nx = -6x1(1 /7)  F((k"/my 2) = -5K~(1/7)(1 + ~"/m72 + "" ") 

with ~b"= 0, while the anharmonic  GB result is [ formula  (2.30) in Ref. 3 
with n = 0],  

NK = --8K1(1/7)(1 + O"/m72 + ...) 

but now with ~b" r 0. It is clear that  expression (3.8c) extends the GB result 
to any order  in 7 in the harmonic  regions. 3 Let us examine the other  quan-  

3 The expansion scheme proposed here can only work when all derivatives stay finite: 
Therefore, the treatment does not apply strictly for piecewise harmonic potentials. However, 
the smootheness of the potential ~b(x) in the anharmonic regions is less crucial close to 
equilibrium than when considering very out-of-equilibrium systems. 
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tities. In all generality, formulas (3.2a) and (3.2b) relate fqK, 7~:1, and /3K1. 
Moreover, 01 = Y.K ([1K1A t + Ym)(A*A) K and the harmonic results for/~K1 
and 7Xl are 

K1 = (1/7) F( O"/m72) 6 Ko 

7/~1 = (1/7) F( qY'/m72)[ -- (fl/m )l/2 ~ ' ] (~ KO 

The anharmonic GB results give (Ref. [3],  formulas (2.11) and (2.14b) 
with n = 0 ,  p =  1] 

O1 = - 7 - 1 d + 7 - 3 (  d + d 2 - d d + d ) +  "'" 

Also, by using d + = A t + ( r n / ~ )  1/2g,/g and d = A + ( m / ~ )  1/2h'/h with 
(2.15), (2.16), (2.18a), and (2.18b) we obtain 

O1 -- (1/7)(1 + O"/m72 + "" ')[A t - (~/rn)l/20'+ (mE) 1/2g,/g] 

For the semianharmonic approximation we can then try 

O1 = (1/7) F(q~"/mTZ)[A * -  (#/m)mfb' + (rn~) l/2g,/g] 

that is, 
/?/~1 = (1/7) r(~"/my2)6~o (3.15a) 

7~:1 = - (1 /7)  F(fb"/rny2)(rn~)-l/2(fl~ ' -  g'/g)6~o (3.15b) 

Inserting this into the exact Eqs. (3.2a) and (3.2b), and with F' x denoting 
the derivative of F(~b"/m72) with respect to x, gives 

r ; / r - -  g'/g - h'/h, (F 'x /F-  g'/g)(~O' - g/g) + (h'/h)' = 0 

which agree by continuity with the choice 

g(x) = F((Y'/m72) = (m72/2~b") [ 1 - (1 - 40"/m72) 1/2 ] (3.16a) 

h(x) = 1 (3.16b) 

With this choice, 

01 =- 011][o] = (F/y)[A* - -  (~ /m) l /2~  '] = - ( / ' / 7 )d  (3.17) 

This expression is exact in the harmonic regions and at least to order 7-5 
for the contributions in ~b", #iv..., in the anharmonic region; it is simply 
obtained by replacing ~b by ~ in the harmonic results. 

To summarize the n---0 case, in the semianharmonic approximation, 
P~o](V, x, t) is given by formula (2.3), 

P[o](V, x, t ) =  ~ Zp(V) O[p][o]C[-o](X, t) 
p=O 
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with 

C[o](X, t ) =  exp(-/3G:o?)0Eo3(X, t) 

0[o?(X, t) itself is a solution of (3.12a), i.e., 

- 0 60 Eol/,~t = r(r  ~) [02 02/~x 2 + VEo I (x)] O to~ 

In the above expressions, the modified potential V[o 3 and the function G[o] 
are simply related to the initial potential ~b(x) [-via (3.13b), (2.18a), and 
(2.18b)] 

V[o](X ) = [ZT~o3(X)/2] 2 -  (0/2) ~ol(X) 

GEo](X) = r + (2/3) 1 In F(~"(x)/m'y 2) 

U[o3(X) -= ~co](x)/m7 
~[ol(X) = r --/3 -~ In F(r 

The modified potential ~[o](X) has the structure of an effective free energy, 
In F playing the role of an oscillation entropy. 

It is possible to calculate P[o] up to the term in Zl(V), since O[~][o1 is 
known: 

011][01 = (1/]2) F(O"(x)/myZ)[(m~) 1/2 O/~X "+" (/3/m) 1/2 r  

= - ( r h , ) d  

For p > 1 the OcplEO] are known in the harmonic approximation, e.g., 

0 [2 3[o I = ( r/7 )2(/3/m )l/2 0'd 

. T H E  A R B I T R A R Y  n C A S E  

Expressions (2.10)-(2.12) must now be used, and (3.3) then becomes 

- (n + p)[A* - (B/m)l/2r (mB)-l/2g'/g] 

x[~  (flKp-IAt + TKp-1)(AtA) K] 

--[A* +(mfl)-l/2g'/g] [~ (flKp+IA* + ?xp+I)(A*A)K]=--O (4.1) 

822/'45/1-2-19 
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We see that except for a factor (n + p), Eqs. (3.3) and (4.1) are identical. 
But this slight difference is capital, since it is now possible to reach negative 
values for p. Equation (4.1) gives rise to three recursion relations when 
expanding/~Kp, 7Kp, and faK into 7-1 power series. 

4.1. The Harmonic Approximation 

Again, we first limit ourselves to a harmonic potential, but now the 
index p may take on negative values. The operators fax take a very simple 
~rm:  

~o = nO"/(mT ) F( O"/m72) (4.2a) 

fal = -1/T F( O"/m7 2 ) (4.2b) 

faK> 1 = 0 (4.2c) 

On the other hand, the coefficients/~Kp and y/~p necessary to build the Op 
and subsequently the different components of P(v, x, t) through (1.9) and 
(2.3) have much more complicated expressions, which are given at least for 
the first values of K and p in Appendix D. But let us first consider the 
equation defining ~E,2(x, t). 

4.2. The Semianharmonic Approximation 

From the above results (4.2) and the basic Eqs. (2.7) and (2.17), in 
which the index n is reintroduced, we obtain an equation of motion for 
OE.j(x, t): 

a~,L.l(x, t)/at = [ - n 7  + nO"/(rn7) r(O"/m7 2) 

- r(O"/m72)/TA[.lAE.l]  OE.l(x, t) 

Using the relation z F Z - F +  1 =0 ,  satisfied by F(z) [-see (3.7)], and 
introducing again (3.16a) 

g(x) = F(O"(x)/my 2) =- F(u"(x)/7) - 7/(2u") { 1 - [- 1 -- (4u")/7 ] 1/2 } 

one finds that 

O~bE,l(x, t)/•t -- - [ n T / g  + (g/y) A*[,2AE, l ] tPE,~(x, t) (4.3) 

This expression has the usual Schr6dinger-like structure found in this kind 
of problem with a convenient potential, i.e., 

- [O/g(x)] OO~,l(x, t)/Ot = [-n70 + S~,2(x)] ~bE,l(x, t) (4.4a) 
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where 

and 

S[ , ] (x  ) = O/TA~,]A[, ? + nTO[g(x) -2 - 1] 

= 0 2 a 2 / a x  2 + viii(x) (4.4b) 

~ !  2 ~z !  V[,](x) = u [ , ] ) / 4  - (0/2)u[n] + nTOEF(u"/7) 2 _ 1 ] (4.4c) 

Again comparing these results with those of Ref. 3, one observes that one is 
exact in harmonic regions, while the other is valid up to order 7 -5 in 
anharmonic regions. Then, in the semianharmonic approximation, we will 
take 

~t 2 ~it tt --2 VE.](x) = ( u [ . ] ) / 4 -  (O/2)u[.] + nTO[F(u /?) - 1] 

+ (02/27) n(1 - n)u TM (4.4d) 

in which the fourth derivative appears as an anharmonic correction and in 
which also qb'(x) [or  u"(x)] is now spatially dependent. 

The general solution O[.] is then constructed in the usual manner as 
an expansion on the basis of the eigenfunctions of S[~ ], 

(4.5) 

analogous to Eq. (2.33) in Ref. 2. Hence, 

~[,](x,  t) = ~ q~[,] p(x) K[,  ] p(t) exp[ - (n 7 + 2[n]p/O)t] 
P 

(4.6) 

in which the time-dependent coefficients KEn]p(t ) are determined by 

~K[. 2 p(t)/Ot = -- ~ (FE.]pq/7)(n 7 + )tD]q/O ) K[n]q(t ) 
q 

x exp [(ZEn ] p - 2 [~]q) t/O] (4.7a) 

The coefficients FEn ] pq play a very important role in the calculation of the 
characteristic times of the problem. Their expression is simply given by 

f 
+oo 

F [ n ] p q  = y d x  ~oFn],(x)[g(x ) - 1 ]  ( D [ n ] q ( X )  
- o o  

= ~)J[n]  pq - -  ~(~pq (4.7b) 
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This definition for F[n]p q is similar to that in our earlier paper when 7 is 
taken very large, since then g - 1  -~ u"/7; but the introduction of JE,]pq, 

JE~lpq = dx q~,]p(X) g(x) q~E,lq(X) (4.7c) 

will appear as a more natural matrix element. 
In the harmonic regions, J[n]pq and F[n]p q a r e  diagonal in p and q, 

and Eq. (4.7a) simplifies considerably: Let FE~lp ~-FE~]pp, 

K[~]p(t) = K[n]p(O ) e x p [ - ( f D ] p / 7 ) ( n  7 + Z[n]p/O)t ] (4.8) 

The initial values KE,]p(0 ) have to be determined from the initial con- 
ditions for P(v, x, t). Inserting (4.8) in (4.6), one obtains 

where 

[,l(X, t) = }-" <0 [,1 p(x) K[~ ~ p(O) exp( - t/z [,1 p) 
P 

(4.9a) 

1/~ [,2, = J[ , ]  p(n7 + 2[,j p/O) (4.9b) 

are the inverse characteristic times for the evolution of P(v, x, t) in the 
intermediate friction regimes when J is diagonal. In particular, this result is 
exact in the harmonic regions. It also easy to check that zEnlp remains 
positive in these regimes without any restrictions. 

To summarize the arbitrary n case, in the semianharmonic 
approximation (i.e., valid at any temperature, and up to 7-5 in the anhar- 
monic regions), PDI(v, x, t) is given by formula (2.3), 

PE~l(v, x, t )= ~ Xp(v)OEp?[,l c[,?(x, t) 
p = O  

with 

C[,l(X, t )= exp(-/~G[~l) O[,l(x, t) 

~E,3(x, t) is itself a solution of (4.4), i.e., 

- 0 c~ D ]/Ot = g(x) InTO + 02 82/c~x 2 + Vn(x) ] t) [n] 

In the above expressions, the modified potential V[.] and the function GD] 
are simply related to the initial potential ~b(x) [via (4.4c), (2.18a), and 
(2.18b)] 
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VE.](x ) = [fi'E.](x)/2] 2 - (0/2) fi(.](x) + nyO [g (x )  2 _ 1 ] 

+ (02/27) n(1 - n )u  TM 

G[ . ] ( x )  = ~b(x)/2 + (1 - 2n - 2n2)(2fl) -1 In g ( x )  

~E.](x) = ~[ . ] ( x ) /m7  

~[ . ] ( x )  = Ok(x) -- (1 + 2n)/? -I in g ( x )  

where g ( x ) =  F(O"(x) /m72) .  Once again ~c.] has the structure of a free 
energy, the number of available states being g ( x )  2~+ 1. 

The general solution O E.l(x, t) is expanded on the eigenstates q)[.l p(X) 
of (4.4) and (4.5): 

~b[.](x, t) = ~ ~oE.]p(X ) KEn]p(t ) exp[ - (n 7 + 2[. ] p/O)l] 
P 

The time-dependent coefficients K[. ~ p(l), explicitly derived in the harmonic 
regions [Eq. (4.8)], can be in principle obtained by perturbation via (4.7) 
in the anharmonic one, but we will not need such corrections in the follow- 
ing application. 

5. T H E  B I S T A B L E  P O T E N T I A L  

We will consider in more detail the important application of the for- 
malism to the Brownian particle in a bistable potential. The potential u(x )  
[-or ~b(x)] consists of two wells xl and x2 with depth ul and u2 and cur- 
vature u'[ and u2'. The wells are separated by a barrier at xo = 0 with height 
u0 and curvature ud. The study is restricted to temperatures 0 low com- 
pared to the barrier heights Au 1 - U o - - u ~  and A u 2 -  U o -  u~. Then V[n](x)  
defined by (4.4d) is essentially determined by the term (~'[nj)2/4 and shows 
three minima, which are located close to the extrema of u(x) .  In fact, 

V'E. ] ~- u 'u ' /2  -- (n + 1/2) Ou"u ' /7  - (2n + 1/2) Ou'" + �9 " " 

in which the contributions Ou" may be neglected for n not too large. 
Again, we will use the WKB method (y) to derive the physical behavior 

of the double well. We need the characteristic parameters of VEn ] at its 
minima (position 2~, curvature, and value of V~cn] ), which are derived in 
Appendix C. We find with F~ = F(u'~'/7) that 

2~ = x~ + O(O/Au~) (5.1a) 

VEn](x~) = V~[,] = --(1/2) Ou2 - nOuj(F~ + 1) + O[-(O/Au~) 2] (5.1b) 

v'~.~(x~) = v 'E .  ~ = (1/2)(~; ')~ + 0 ( 0 / ~ )  (5.1c) 
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so that in the vicinity of a minimum, 

" + z(u~ ) (x - x~) 2 (5.2) VE,2(x)----- - - � 8 9  ~ , 2 

Since only the low-lying eigenvalues of S[n], for which IZE. 2 - V~E.]I is of 
order Olu'~'l, are relevant in our problem, and since the temperature is taken 
to be low with respect to the barrier, an harmonic approximation appears 
to be justified (3'6) for VE. 1. 

The time scales involved in the relaxation processes are determined 
starting from the "energy" levels A~,,2 p in the three valleys of Vt. ~" 

A~, lp= - ( 1 / 2 ) [ 2 n ( F ~ +  1)+ 1] O u ' + O  lu~'l (p + 1/2), 

A~n3p = Ou"~Ep - n ( F ~  + 1)3 

p = 0 , 2 , 2  .... 

(5.3a) 

(5.3b) 

and for a = 0, 

A~ [ p + n ( F ~ +  1)+ 1] (5.3c) 

and one can verify that the eigenvalues of Ref. 3 are recovered when 7 is 
large enough to give F ~ -  1. 

For n r 0, the lowest eigenvalues are A~n3o = -Ou~"n(F~ + 1), ~ = 1, 2. 
These values can be considered to be good approximations for the lowest 
eigenvalues of S[,?. Tunneling between wells 1 and 2 can only introduce 
exponentially small corrections ~ exp( - A ul,2/0), which can be neglected at 
low temperature. The eigenfunctions associated with the eigenvalues (5.3b) 
are the usual oscillator functions. In contrast, for n = 0  the two lowest 
eigenvalues are AiEo?o=A2E01o=0 and tunneling between the two states 
must be explicitly considered. We will start first with the n - -0  case. 

5.1. Calculat ion of C[o](X, t)  

The structure of the calculation remains similar to Ref. 3. The new 
modified potential extracted from (3.13b), (3.14), (2.18b), (3.16a), and 
(3.16b) is ~ tEo l (X )=U(x ) - -O lng (x  ). The eigenvalue problem (3.15) is 
studied using the WKB approximation, which becomes exact in the low- 
temperature limit. If we are concerned with distributions in the vicinity of 
equilibrium, hence located inside the wells of u(x),  the eigenstates ~OEo 2 p(x) 
are linear combinations of Weber functions Dr(y )  with integer r, centered 
at the bottoms of the wells. The two lowest eigenstates ~0co2o(X ) and 
q0E011(x ) are linear combinations of Gaussians centered on Xl and x2, while 
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the higher eigenfunctions ~O[o]p with p = 2 ,  3 .... are described by pure 
"oscil latory" states inside the wells: 

where 

and 

~O[o]o(X) = qr + a~2) -a/2 -+- ~P(o2)(x)( 1 + 321) -1/2 (5.4a) 

q~[o]l(X) = -qr + 3~)-1/2  + qr + a~2 ) -m  (5.4b) 

~O(o:)(x) - (u"/27rO) w2 exp[  - (x - x~) 2 u;'/40] (5.4c) 

312 = (u'l') w2 exp{ [17[o](X1)- gtEo](X2) ]/20 } (5.4d) 

For  p = 2, 3, 4 ..... where p now corresponds to a pair of indices r, (c0, we 
find 

(P Eo] p(X) = q) p(X) -- (p~)(x) -- (r!)-W2(u"/27rO) w4 D,( [x  - x=J(u"/O) 1/2) (5.5a) 

with r = 1, 2, 3,..., c~ = l, 2, and 

Dr(y)  = (- -1)  r exp(y2/4)  dr/dY r [ e x p ( - y 2 / 4 ) ]  (5.5b) 

The corresponding eigenvalues are also unchanged compared  to Ref. 3, 

Z[o]o = 0 (5.6a) 

21o31 = O/(2rc)[(u; lu~'l )1/2 exp{ [UEo](Xl) - ftEoj(Xo)]/O) 

+ (u~' lu~'l)W2exp{[f~Eo3(X2)-fiEo](Xo)]/O}] (5.6b) 

~[~3 = Oru'~', ~> 2, 1, 2, 3,..., ct 1, 2 (5.6c) 2[O]p-=-~[o]r p r =  = 

We also need the corresponding expressions for J[o]pq. Using Eqs. (5.4) 
and (5.5), we find 

J~o]oo = g j ( 1  + 322)+ g2/(1 + St221) (5.7a) 

J[o]m = J[o]lo = (g2 - g l  )/(at12 + 321 ) (5.7b) 

J [o]u  = gl/(  1 + 3~)  + g2/(1 + d~2) (5.7c) 

while for p, q >~ 2 we have 

- -  ~# r ~ J[o]pq=J[o]rr,=g~(~c~#~rr ,, r, =1,2 ,3 , . . . ,  ~ , f l = l , 2  (5.8a) 

and 
J[o]op -"= J[o]  pO = J[o]  lp ~ J [o]  pl = 0 (5.8b) 

In the above formulas g~ = g(x~) is given by (3.16a). 
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An expression for CEo](X, t) in the semianharmonic approximation is 
then easily derived: 

C[oj(X, t) = g(x) mexp[  - u(x)/20] {4o [olo(x)KEojo(0) 

+ KEo]l(0)[JEo]m ~p [o]o(X) exp( - - •  [011 J[o]11 t/O) 

+ L ~ K~o)]r(O)~~ (5.9) 
c ~ = l  r = l  

The coefficient Kto]o(0) is determined by the normalization (3) at all times of 
cEo](X, t): 

7 1 / 2  ~r- + ~  

It is interesting to consider the evolution of the distribution Qo](X, t) 
located at x = x~ at t = 0. Starting from (5.9) and using the boundary con- 
ditions at t = 0 and t = ~ ,  it is easy to show that 

CEo3(X, t l Xs, O) = [~Oo(X)/mo(Xs)] ~ %(x) %(Xs) e--l/~E~ (5.11) 
p = 0  

In this expression, we only need the eigenfunctions qgp(X)= 
l im~_~ q~Eo]p(x), which correspond to the large damping case and have 
previously been determined. In the derivation, we use the fact that the dis- 
tributions are strongly located in the bottoms of the wells, so that 
g(x)~o~)(x) ~- g(x~)q~)(x). The relaxation times are on the contrary 
stongly dependent on 7: 

~ ] o  = 0 (5.12a) 

T[-1 ] I  : 0 l~ , [O] l J [o ] l  1 (5.12b) 

while for p ~> 2 (~ = 1.2; r = l, 2, 3,...), 

v[J]p ~.(~) ~ 1 , (5.12c) -- = k ~ [ 0 ] r /  = ru~g~ 

These final results are valid to any order in 7 -~ as long as the anharmonic 
parts of the potential are not reached by the distributions ~op(x), i.e., for 
temperatures low compared with barrier heights Au~ and Au2. 

C[o](X, t) satisfies both the normalization condition [see formula (2.24) 
of Ref. 3 ] and the stationary equilibrium limit 

7:: ]-' lim C[o](X, t) = Peq(X)  = dx e .(x)lO exp[--u(x)lO] 
t ~ o o  
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for any arbitrary initial conditions. The slowest relaxation time toward 
equilibrium rEolm can be found explicitly by taking 2Eo]~ from (5.6b) and 
Jc0]H from (5.7c), and using the convenient definition 

(co=/y) ~ = [u"l/7, v~J~ = W~ ~ 2 + W2 ~ ~ (5.13a) 

where 

W 1  ~ 2 = (~01 c~ g(xo) exp( - AuJO) 

W 2  ~ 1 = r176176 g(xo) exp(-Au2/O) 

This expression for the rate is exact to any order of ? -a and valid for tem- 
peratures small compared to the barrier heights. Using the explicit 
expression for go, one finds that 

W= ~ ~ -- r/~= _~ p = c%/(2rm)o) [(o) ~ + ~/2/4) 1/2 - 7/23 exp(--Au~/O) (5.13b) 

5.2. Calculat ion of C[n](X, t) 
When n # 0  the norm NE,j(t ) -= ~_+~ dx cE,~(x, t) is no longer conser- 

ved but decays as exp(-nTt) .  The approximate eigenvalues )'[n3p of  S[n3, 
n # 0 ,  are identical to AE,3p from (5.3b) and (5.3c). Tunneling between dif- 
ferent wells is irrelevant, since it can only lead to exponentially small 
corrections to the relaxation times. Hence the corresponding eigenfunctions 
a r e  

qO[,qp(X) = (pp(X) =-- (p~)(X) =- (r! ) 1/2(u~'/2~0)1/2 Dr(x - -  Xc~)(bl t~/O)  1/2) (5 .14)  

so that (4.%) gives 

r , [ Y ]  T~(~)tO a exp( -- t I r [~,)3 r ) ,  (5.15) 
r,~ 

Using (4.9b) and the relation (u ' /?)  g2 _ g~ + 1 = O, one obtains for c~ = 1, 2 
that 

( r ~ r ) - 1  = n7 + u2(r - n) g~ 

= ( n + r ) 7 / 2 +  [ ( 7 2 / 4 - c o 2 ) l / 2 ] ( n - r )  (5.16a) 

while for ~ = 0, 

,.r (0) ] - - 1  
~oq, 'J = r l T + l u g } l ( r + n + l ) g ~  

= ( n - r - 1 ) 7 / 2 + [ ( ? 2 / 4 - o ) 2 ) m ] ( n + r + l )  (5.16b) 
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These expression are complete ly  identical to the eigenvalue 2~,r for the har-  
monic  potent ia l  given by Risken and Vollmer,  (6) and this is not  surprising 
since the essential cont r ibut ion  comes f rom the ha rmonic  regions. F r o m  
(5.16a) and  (5.16b) one sees tha t  for e = 0, 1, 2, (Z~)lr) -1 has the general 
s tructure 

with 

(,.C (~) ]--1 [n]r! = (T~O)r) 1 A7 (72'(ff~) 1 (5.17) 

( ~ r )  1 = r [7/2  - (72/4 _ (.oc~)2 1/2] 

(v'(~]) ~ = nE7/2 + (72/4 - co~) w2] 

5.3. Calculat ion of  P(v,  x, t) 

In  the case of  an initial dis tr ibution close to the b o t t o m  of a well c~ 
(e = 1 or  2) the p r o p a g a t o r  cEn](x, t lxs, 0) has the following expression: 

c[,](x, t [ xs, O) = P~" 6no + exp( - t/z',(~)){ [@o=)(x)]2(1 - 6n0) 

+ 

x ~ q~)(x)cp~)(x~)exp(-t/r}~@)} (5.18) 
r = l  

The general solut ion P(v, x, t) is then constructed f rom (1.9)-(1.11). But 
one must  be aware  that  the initial value p rob lem needs some caution. 4 This 
point  is detailed in Section 2.2 of  Ref. 3. 

6. C O N C L U S I O N  

In this pape r  we first derived a general app roach  to obtain  the 
solutions of  the F P K K  equat ion  in the ove rdamped  regime. The main  
results are summar ized  at the end of the cor responding  sections. Moreover ,  
in Section 5, we appl ied the results to the bistable potent ia l  and calculated 
the characterist ic  times and the p ropaga to r ,  but  when t empera tu re  is low 
with respect  to the barr ier  heght, a case for which the W K B  approach  can 
be used. (7) N o t  only is the usual K r a m e r s  t ime recovered,  but  also all the 
characterist ic  times of the system as well as the p ropaga to r ,  even for 
velocity and  posi t ion far f rom equilibrium. The same technique could also 

4 The equation relating the set CEn](x, 0) to the initial value coefficients aE,](x, 0) nevertheless 
takes a remarkably simple operator form: c= {O/(1 +O)}a, where c= IIc[,3ll, 
0 = IlO[.]c~,lll. and a = Ilat.]ll. 
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be applied to determine the generalized Suzuki scaling law for the 
evolution from the instability point in overdamped systems governed by a 
FPKK equation (and not simply by a diffusion equation). This would 
generalize a previous calculation (8) limited to the lowest orders in 7 -I 

Further developments may be considered in two directions: 
The first consists in improving the corrections due to anharmonicity 

by taking into account the lowest corrections arising from the commutator 
of ~n with A and A* [-formula (3.4)]. One remaining issue is whether it is 
possible to find a Hermitian operator for higher order corrections ~ei3 ~ [ n ] ,  
i>~ 5. To answer this, the first point needs to be addressed. 

The second point is to obtain simpler expressions in particular for the 
Oeml[,] operators. In particular, it is possible that a more convenient 
approach could be found to solve the operator Eqs. (2.10) and (2.11). 

APPENDIXA.  DERIVATION OF THE RECURSION 
RELATIONS (2.5) AND (2.6) 

We give here the main leading to the recursion relation (2.5), 

O[ .+p ] [ . ] (8 [ , , ]  + p T ) _  = -(n+p) dO[n+p l ] [ n ]  +d+O[n+p+1][n] 

and the particular relation (p = 0) (2.6), 

To perform this calculation, it is necessary to compare different orders in 
7 -1, i.e..., to derive first recursion relations between ,~ri] and ~[i] To do ' 1  [ p ] [ n ]  ~ [ n ] '  

this, we insert (1.10) with (1.11) and (1.13) into (1.1), using (1.2) and (1.3), 
and then utilize the relations (1.8) and the biorthogonality between Z, and 
)~,. Then, by comparing the coefficients of 7 P, we obtain the recursion 
relations between the different orders [relations (2.11), (2.12a), and (2.12b) 
of Ref. 2] and then immediately the relations (2.5) and (2.6) after mul- 
tiplication of both sides by ?-P and summation on p. 

APPENDIX B. DETERMINATION O F A ( q , r , s )  

From the recursions (3.9a) and (3.9b) it is easy to deduce the equation 
satisfied by A(q, r, s). For and L and p one has 

Y~ (--1)r/(p-- 2q--r)! E (L + p-- S-- 2)!/(L + r--~)! 
r s 

• [ ( L + p - s -  1)A(q, r, s ) - - (2q--  1)(2L + p -  1 ) A ( q -  1, r, s)] = 0  
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This equation rapidly leads to complicated expressions for A(q, r, s). Some 
particular cases are nevertheless easily calculated. We only give here tables 
in the lowest coefficients in q, r, s which correspond to the most interesting 
values: 

q = 0  0 

1 

q = l  0 

1 

q = 2  0 

3 
0 

q = 3  

0 
1 
2 

15 
0 
0 

71 
0 
0 

33 
2t 

0 

q = 4  

0 
1 
2 
3 

0 1 2 3 4 

105 744 718 112 1 
0 0 462 356 22 
0 0 0 162 58 
0 0 0 0 24 
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A P P E N D I X  C. T A Y L O R  E X P A N S I O N  OF V[ . ]  POTENTIALS 
IN THE V I C I N I T Y  OF THEIR M I N I M A  

The star t ing formula  is fo rmula  (4.4d). Using the explicit expression 
for ~, ~ = u - (2n + 1 )0 In g, and neglecting the 02 contr ibut ions,  we obta in  

VEn](x ) = (u')2/4 - (n + 1 / 2 ) O u '  g ' / g  - ( O / 2 ) u "  - nOu"~(g + 1) 

~- V~E. l + V'~Enl(X - -  X~) ~ 

where the ex t rema 2~ associated to V'~[n?=0 cor respond  to (using 

g ' = F' u "/7 ) 

u'~ ~- Ou'~'[(2n + 1) F' /TF+ (1 + 4nF'/F3)/u" ] 

so that  

V~[.] = - (1 /2  )Ou" - nOu'~'( F + 1) + O[ )O/Au~) 2] 

V2E. ~ = (1 /2 ) ( .2 )~  + O(O/Au~) 

The equil ibr ium posit ions 2~ of V[n~ only differ by a te rm of order  Ou'~" 
f rom the original equi l ibr ium x~ of the potent ia l  u(x) as 2~ - x~ ~- 2u' ju ' .  
This difference will be considered as negligible. 

A P P E N D I X  D. EXPRESSION OF THE FIRST COEFFIC IENTS 
13K. A N D  YKp FOR GENERAL n 

Let z=qY'/m72, F:(f l /m)l /2q~ ', and S=qY'/m; then the solution of 
recursions derived f rom (4.1) ana logous  to (3.6a) and (3.6b) gives following 
results. 

(a) For  K = 0 ,  

flOl = ( n +  1 ) { 1 -  ( n - 2 ) z / 2 !  + (n 2 -  10n+  12)z2/3! 

- (n 3 - 2 3 n 2 +  1 3 0 n -  120)z3/4! + . . .} 

So -  1 = - F(z);  7ol = -Fflol  ; 70 1 = 0 

flo2 = - F(n + 1 )(n + 2){ 1/2! - (2n - 6)z/3! 

+ (3n 2 - 35n + 60)z2/4! 

- (4n 3 - 102n 2 + 658n - 840)z3/5! + -. .} 

/~o-2 = (F/2) F(z)2; 7oz = --Fflo2 ; 70-2 = - ( S / 2 )  F(z)  2 
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flo3 = ( F2 q- S ) ( n  + 1 )(n + 2) (n  + 3){ 1/3! --  (3n -- 12) z/4! 

+ (6n 2 --  81n + 180)z~/5! 

- (10n 3 --  282n 2 + 2072n --  3360)z3/6!  + "--} 

f lo-3  = -- ( F2 --  2S) /3!  F ( z )  3 

2o3 = - Ffio3; Yo-3 = (FS) /3!  F ( z )  3 

flo4 = - F( F2 + 3S) (n  + 1)(n + 2 ) . . .  (n + 4){1/4!  - (4n - 20)z /5!  

+ (10n 2 - 154n + 420)z2/6!  

- (20n 3 - 620n z + 5136n - 10,080)z3/7! + -- .} 

~0 -- 4 = F ( F  2 - 5S)/4!  F ( z )  4 

Y04 

f105 

~ 
0 - - 5  ~ - - -  

Yos = -- F[3o5 ; 7o -  5 = FS(  F2 - 7S)/5!  F ( z )  5 

a n d  so on.  

(b)  For K =  1, 

flll = - n ( n  + 1 ) { z / 2 ! -  ( 3 n - 9 ) z 2 / 3 !  

+ [ ( 1 3 / 2 ) n  2 -  (131 /2 )n  + 107]z3/4!  . . . .  } 

fl~ ~ = ( n +  1 ) z / 2 ! -  (n z - 9 n +  10)z2/3! 

+ (n 3 - 22n 2 + 107n + 130)z3/4! . . . .  

711 = - -Fr i l l ;  71-1 = 0  

/~12 = Frl ( t l  -~- ] ) ( r / - { -  2){2z/3!  - [ ( 1 7 / 2 ) n  - ( 6 5 / 2 ) ] z 2 / 4 !  

+ (24n 2 -- 277n + 573)z3/5! . . . .  

fi, 2=  - - F ( n +  1 ) { 2 z / 3 ! -  [ ( 5 / 2 ) n -  35]z2/41 

+ (9t, 2 - 255n + 1974)z3/5! + "" "} 

712 = - FB12 + S { ( 2 n  + 6 ) r  - (3n 2 - 35n + 60)z2/4! 

+ (4n 3 - 102n 2 + 658n - -  8 4 0 ) z 3 / 5 !  Jr- " "  " }  

Gouyet 

- -  F f l o 4  ; ' ~ o - 4  = - S (  F 2  - 3 S ) / 4 ! / ~ ( z )  4 

( F  4 + 6F2S + 3SZ)(n + 1)(n + 2 ) . . .  (n + 5){ 1/5! - (5n - 30)z/6!  

+ (15n 2 - 2 6 0 n  + 840)z2/7! 

- (35n 3 -  1185n2 + 1 0 , 9 5 0 n -  25,200)z3/8!  + . . . }  

- ( F  4 - 9 F 2 S +  8S 2) F ( z )  5 
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7~-2 = S{(2n - 4 ) z / 3 ! -  [ (5 /2)n  2 + (65/2)n - 25]  z2/4! 

+ (3n 3 - 8 2 n  2 + 5 7 3 n -  182)z2/5! + " . }  

and so on. General  expressions for/~,~p and YXp have been obtained at least 
up to K = 4 ,  p = 6 .  They have been derived by solving the recursion 
relations issuing from (4.1). The A M P  symbolic p rogram was of  great help 
in this derivation. 
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